切割棒以獲得最大利潤

給定一根長度為 n 英寸的長度和長度為 m 的陣列,其中包含所有尺寸小於 n 的尺寸的價格。我們必須找到通過切割杆和銷售件而獲得的最大值。例如,如果杆的長度是 8 並且不同部件的值如下給出,則最大可獲得值是 22

       +---+---+---+---+---+---+---+---+
 (price)| 1 | 5 | 8 | 9 | 10| 17| 17| 20|
        +---+---+---+---+---+---+---+---+

我們將使用 2D 陣列 dp [m] [n + 1] ,其中 n 是杆的長度,m 是價格陣列的長度。對於我們的例子,我們需要 dp [8] [9] 。這裡 dp [i] [j] 將通過銷售長度為 j 的杆來表示最高價格。我們可以將長度 j 的最大值作為一個整體,或者我們可以打破長度以最大化利潤。

首先,對於第 0 列,它不會貢獻任何內容,因此將所有值標記為 0.因此第 0 列的所有值都將為 0.對於 dp [0] [1] ,我們可以獲得的最大值是多少賣長杆 1.長度為 1.對於長度為 2 dp [0] [2]的杆,我們可以得到 2(1 + 1)。這一直持續到 dp [0] [8] 。所以在第一次迭代之後我們的 dp []陣列看起來像。

      +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+

對於 dp [2] [2],我們要問自己,如果我將杆分成兩塊(1,1)或整個杆(長度= 2),我能得到的最好的是什麼。我們可以看到如果我將杆分成兩塊,我可以獲得的最大利潤是 2,如果我有杆作為一個整體,我可以賣它為 5.在第二次迭代之後,dp []陣列看起來像:

     +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+ 

所以要計算 dp [i] [j],我們的公式將如下所示:

if j>=i
    dp[i][j] = Max(dp[i-1][j], price[i]+arr[i][j-i]);
else
    dp[i][j] = dp[i-1][j];

在最後一次迭代之後,我們的 dp []陣列看起來像

       +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+

我們將得到 dp [n] [m + 1]的結果

用 Java 實現

public int getMaximumPrice(int price[],int n){
        int arr[][] = new int[n][price.length+1];
        
        for(int i=0;i<n;i++){
            for(int j=0;j<price.length+1;j++){
                if(j==0 || i==0)
                    arr[i][j] = 0;
                else if(j>=i){
                    arr[i][j] = Math.max(arr[i-1][j], price[i-1]+arr[i][j-i]);
                }else{
                    arr[i][j] = arr[i-1][j];
                }
            }
        }
        return arr[n-1][price.length];
    }

時間複雜性

O(n^2)